Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Neuromuscul Disord ; 33(3): 270-273, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796140

RESUMO

We provide an up-to-date and accurate minimum point prevalence of genetically defined skeletal muscle channelopathies which is important for understanding the population impact, planning for treatment needs and future clinical trials. Skeletal muscle channelopathies include myotonia congenita (MC), sodium channel myotonia (SCM), paramyotonia congenita (PMC), hyperkalemic periodic paralysis (hyperPP), hypokalemic periodic paralysis (hypoPP) and Andersen- Tawil Syndrome (ATS). Patients referred to the UK national referral centre for skeletal muscle channelopathies and living in UK were included to calculate the minimum point prevalence using the latest data from the Office for National Statistics population estimate. We calculated a minimum point prevalence of all skeletal muscle channelopathies of 1.99/100 000 (95% CI 1.981-1.999). The minimum point prevalence of MC due to CLCN1 variants is 1.13/100 000 (95% CI 1.123-1.137), SCN4A variants which encode for PMC and SCM is 0.35/100 000 (95% CI 0.346 - 0.354) and for periodic paralysis (HyperPP and HypoPP) 0.41/100 000 (95% CI 0.406-0.414). The minimum point prevalence for ATS is 0.1/100 000 (95% CI 0.098-0.102). There has been an overall increase in point prevalence in skeletal muscle channelopathies compared to previous reports, with the biggest increase found to be in MC. This can be attributed to next generation sequencing and advances in clinical, electrophysiological and genetic characterisation of skeletal muscle channelopathies.


Assuntos
Síndrome de Andersen , Canalopatias , Paralisia Periódica Hipopotassêmica , Transtornos Miotônicos , Paralisia Periódica Hiperpotassêmica , Humanos , Paralisia Periódica Hiperpotassêmica/genética , Paralisia Periódica Hipopotassêmica/genética , Prevalência , Canalopatias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Mutação , Músculo Esquelético , Transtornos Miotônicos/genética , Síndrome de Andersen/genética
2.
Brain ; 146(4): 1316-1321, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36382348

RESUMO

Accurate determination of the pathogenicity of missense genetic variants of uncertain significance is a huge challenge for implementing genetic data in clinical practice. In silico predictive tools are used to score variants' pathogenicity. However, their value in clinical settings is often unclear, as they have not usually been validated against robust functional assays. We compared nine widely used in silico predictive tools, including more recently developed tools (EVE and REVEL) with detailed cell-based electrophysiology, for 126 CLCN1 variants discovered in patients with the skeletal muscle channelopathy myotonia congenita. We found poor accuracy for most tools. The highest accuracy was obtained with MutationTaster (84.58%) and REVEL (82.54%). Both of these scores showed poor specificity, although specificity was better using EVE. Combining methods based on concordance improved performance overall but still lacked specificity. Our calculated statistics for the predictive tools were different to reported values for other genes in the literature, suggesting that the utility of the tools varies between genes. Overall, current predictive tools for this chloride channel are not reliable for clinical use, and tools with better specificity are urgently required. Improving the accuracy of predictive tools is a wider issue and a huge challenge for effective clinical implementation of genetic data.


Assuntos
Canalopatias , Miotonia Congênita , Humanos , Canalopatias/genética , Músculo Esquelético , Canais de Cloreto/genética , Miotonia Congênita/genética , Mutação
3.
Epilepsia ; 64(2): 443-455, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36318112

RESUMO

OBJECTIVE: Mutations in the genes encoding neuronal ion channels are a common cause of Mendelian neurological diseases. We sought to identify novel de novo sequence variants in cases with early infantile epileptic phenotypes and neurodevelopmental anomalies. METHODS: Following clinical diagnosis, we performed whole exome sequencing of the index cases and their parents. Identified channel variants were expressed in Xenopus oocytes and their functional properties assessed using two-electrode voltage clamp. RESULTS: We identified novel de novo variants in KCNA6 in four unrelated individuals variably affected with neurodevelopmental disorders and seizures with onset in the first year of life. Three of the four identified mutations affect the pore-lining S6 α-helix of KV 1.6. A prominent finding of functional characterization in Xenopus oocytes was that the channel variants showed only minor effects on channel activation but slowed channel closure and shifted the voltage dependence of deactivation in a hyperpolarizing direction. Channels with a mutation affecting the S6 helix display dominant effects on channel deactivation when co-expressed with wild-type KV 1.6 or KV 1.1 subunits. SIGNIFICANCE: This is the first report of de novo nonsynonymous variants in KCNA6 associated with neurological or any clinical features. Channel variants showed a consistent effect on channel deactivation, slowing the rate of channel closure following normal activation. This specific gain-of-function feature is likely to underlie the neurological phenotype in our patients. Our data highlight KCNA6 as a novel channelopathy gene associated with early infantile epileptic phenotypes and neurodevelopmental anomalies.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Humanos , Epilepsia/genética , Mutação/genética , Convulsões/genética , Canal de Potássio Kv1.6/genética
4.
Brain ; 145(6): 2108-2120, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34919635

RESUMO

Andersen-Tawil syndrome is a neurological channelopathy caused by mutations in the KCNJ2 gene that encodes the ubiquitously expressed Kir2.1 potassium channel. The syndrome is characterized by episodic weakness, cardiac arrythmias and dysmorphic features. However, the full extent of the multisystem phenotype is not well described. In-depth, multisystem phenotyping is required to inform diagnosis and guide management. We report our findings following deep multimodal phenotyping across all systems in a large case series of 69 total patients, with comprehensive data for 52. As a national referral centre, we assessed point prevalence and showed it is higher than previously reported, at 0.105 per 100 000 population in England. While the classical phenotype of episodic weakness is recognized, we found that a quarter of our cohort have fixed myopathy and 13.5% required a wheelchair or gait aid. We identified frequent fat accumulation on MRI and tubular aggregates on muscle biopsy, emphasizing the active myopathic process underpinning the potential for severe neuromuscular disability. Long exercise testing was not reliable in predicting neuromuscular symptoms. A normal long exercise test was seen in five patients, of whom four had episodic weakness. Sixty-seven per cent of patients treated with acetazolamide reported a good neuromuscular response. Thirteen per cent of the cohort required cardiac defibrillator or pacemaker insertion. An additional 23% reported syncope. Baseline electrocardiograms were not helpful in stratifying cardiac risk, but Holter monitoring was. A subset of patients had no cardiac symptoms, but had abnormal Holter monitor recordings which prompted medication treatment. We describe the utility of loop recorders to guide management in two such asymptomatic patients. Micrognathia was the most commonly reported skeletal feature; however, 8% of patients did not have dysmorphic features and one-third of patients had only mild dysmorphic features. We describe novel phenotypic features including abnormal echocardiogram in nine patients, prominent pain, fatigue and fasciculations. Five patients exhibited executive dysfunction and slowed processing which may be linked to central expression of KCNJ2. We report eight new KCNJ2 variants with in vitro functional data. Our series illustrates that Andersen-Tawil syndrome is not benign. We report marked neuromuscular morbidity and cardiac risk with multisystem involvement. Our key recommendations include proactive genetic screening of all family members of a proband. This is required, given the risk of cardiac arrhythmias among asymptomatic individuals, and a significant subset of Andersen-Tawil syndrome patients have no (or few) dysmorphic features or negative long exercise test. We discuss recommendations for increased cardiac surveillance and neuropsychometry testing.


Assuntos
Síndrome de Andersen , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/genética , Síndrome de Andersen/terapia , Eletrocardiografia , Testes Genéticos , Humanos , Morbidade , Mutação/genética , Fenótipo
5.
Brain ; 145(2): 607-620, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34529042

RESUMO

High-throughput DNA sequencing is increasingly employed to diagnose single gene neurological and neuromuscular disorders. Large volumes of data present new challenges in data interpretation and its useful translation into clinical and genetic counselling for families. Even when a plausible gene is identified with confidence, interpretation of the clinical significance and inheritance pattern of variants can be challenging. We report our approach to evaluating variants in the skeletal muscle chloride channel ClC-1 identified in 223 probands with myotonia congenita as an example of these challenges. Sequencing of CLCN1, the gene that encodes CLC-1, is central to the diagnosis of myotonia congenita. However, interpreting the pathogenicity and inheritance pattern of novel variants is notoriously difficult as both dominant and recessive mutations are reported throughout the channel sequence, ClC-1 structure-function is poorly understood and significant intra- and interfamilial variability in phenotype is reported. Heterologous expression systems to study functional consequences of CIC-1 variants are widely reported to aid the assessment of pathogenicity and inheritance pattern. However, heterogeneity of reported analyses does not allow for the systematic correlation of available functional and genetic data. We report the systematic evaluation of 95 CIC-1 variants in 223 probands, the largest reported patient cohort, in which we apply standardized functional analyses and correlate this with clinical assessment and inheritance pattern. Such correlation is important to determine whether functional data improves the accuracy of variant interpretation and likely mode of inheritance. Our data provide an evidence-based approach that functional characterization of ClC-1 variants improves clinical interpretation of their pathogenicity and inheritance pattern, and serve as reference for 34 previously unreported and 28 previously uncharacterized CLCN1 variants. In addition, we identify novel pathogenic mechanisms and find that variants that alter voltage dependence of activation cluster in the first half of the transmembrane domains and variants that yield no currents cluster in the second half of the transmembrane domain. None of the variants in the intracellular domains were associated with dominant functional features or dominant inheritance pattern of myotonia congenita. Our data help provide an initial estimate of the anticipated inheritance pattern based on the location of a novel variant and shows that systematic functional characterization can significantly refine the assessment of risk of an associated inheritance pattern and consequently the clinical and genetic counselling.


Assuntos
Miotonia Congênita , Miotonia , Canais de Cloreto/genética , Humanos , Mutação/genética , Miotonia/genética , Miotonia Congênita/genética , Fenótipo
6.
Epilepsia ; 62(5): 1256-1267, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33735526

RESUMO

OBJECTIVE: Mutations in KCNC1 can cause severe neurological dysfunction, including intellectual disability, epilepsy, and ataxia. The Arg320His variant, which occurs in the voltage-sensing domain of the channel, causes a highly penetrant and specific form of progressive myoclonus epilepsy with severe ataxia, designated myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK). KCNC1 encodes the voltage-gated potassium channel KV 3.1, a channel that is important for enabling high-frequency firing in interneurons, raising the possibility that MEAK is associated with reduced interneuronal function. METHODS: To determine how this variant triggers MEAK, we expressed KV 3.1bR320H in cortical interneurons in vitro and investigated the effects on neuronal function and morphology. We also performed electrophysiological recordings of oocytes expressing KV 3.1b to determine whether the mutation introduces gating pore currents. RESULTS: Expression of the KV 3.1bR320H variant profoundly reduced excitability of mature cortical interneurons, and cells expressing these channels were unable to support high-frequency firing. The mutant channel also had an unexpected effect on morphology, severely impairing neurite development and interneuron viability, an effect that could not be rescued by blocking KV 3 channels. Oocyte recordings confirmed that in the adult KV 3.1b isoform, R320H confers a dominant negative loss-of-function effect by slowing channel activation, but does not introduce potentially toxic gating pore currents. SIGNIFICANCE: Overall, our data suggest that, in addition to the regulation of high-frequency firing, KV 3.1 channels play a hitherto unrecognized role in neuronal development. MEAK may be described as a developmental dendritopathy.


Assuntos
Dendritos/patologia , Epilepsias Mioclônicas Progressivas/fisiopatologia , Neurogênese/genética , Canais de Potássio Shaw/genética , Animais , Humanos , Interneurônios/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Epilepsias Mioclônicas Progressivas/genética
7.
JCSM Rapid Commun ; 4(2): 245-259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35174322

RESUMO

BACKGROUND: Periodic paralysis (PP) is a rare genetic disorder in which ion channel mutation causes episodic paralysis in association with hyper- or hypokalaemia. An unexplained but consistent feature of PP is that a phenotype transition occurs around the age of 40, in which the severity of potassium-induced muscle weakness declines but onset of fixed, progressive weakness is reported. This phenotype transition coincides with the age at which muscle mass and optimal motor function start to decline in healthy individuals. We sought to determine if the phenotype transition in PP is linked to the normal ageing phenotype transition and to explore the mechanisms involved. METHODS: A mouse model of hyperkalaemic PP was compared with wild-type littermates across a range of ages (13-104 weeks). Only male mice were used as penetrance is incomplete in females. We adapted the muscle velocity recovery cycle technique from humans to examine murine muscle excitability in vivo. We then examined changes in potassium-induced weakness or caffeine contracture force with age using ex vivo muscle tension testing. Muscles were further characterized by either Western blot, histology or energy charge measurement. For normally distributed data, a student's t-test (± Welch correction) or one- or two-way analysis of variance (ANOVA) was performed to determine significance. For data that were not normally distributed, Welch rank test, Mann Whitney U test or Kruskal-Wallis ANOVA was performed. When an ANOVA was significant (P < 0.05), post hoc Tukey testing was used. RESULTS: Both WT (P = 0.009) and PP (P = 0.007) muscles exhibit increased resistance to potassium-induced weakness with age. Our data suggest that healthy-old muscle develops mechanisms to maintain force despite sarcolemmal depolarization and sodium channel inactivation. In contrast, reduced caffeine contracture force (P = 0.00005), skeletal muscle energy charge (P = 0.004) and structural core pathology (P = 0.005) were specific to Draggen muscle, indicating that they are caused, or at least accelerated by, chronic genetic ion channel dysfunction. CONCLUSIONS: The phenotype transition with age is replicated in a mouse model of PP. Intrinsic muscle ageing protects against potassium-induced weakness in HyperPP mice. However, it also appears to accelerate impairment of sarcoplasmic reticulum calcium release, mitochondrial impairment and the development of core-like regions, suggesting acquired RyR1 dysfunction as the potential aetiology. This work provides a first description of mechanisms involved in phenotype transition with age in PP. It also demonstrates how studying phenotype transition with age in monogenic disease can yield novel insights into both disease physiology and the ageing process itself.

8.
J Neuromuscul Dis ; 8(1): 151-154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33074188

RESUMO

Andersen-Tawil syndrome (ATS) is a rare autosomal dominant neuromuscular disorder due to mutations in the KCNJ2 gene. The classical phenotype of ATS consists of a triad of periodic paralysis, cardiac conduction abnormalities and dysmorphic features. Episodes of either muscle weakness or cardiac arrhythmia may predominate however, and dysmorphic features may be subtle, masking the true breadth of the clinical presentation, and posing a diagnostic challenge. The severity of cardiac involvement varies but includes reports of life-threatening events or sudden cardiac death, usually attributed to ventricular tachyarrhythmias. We report the first case of advanced atrioventricular (AV) block in ATS and highlight clinical factors that may delay diagnosis.


Assuntos
Síndrome de Andersen/complicações , Bloqueio Atrioventricular/etiologia , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/fisiopatologia , Bloqueio Atrioventricular/diagnóstico , Bloqueio Atrioventricular/fisiopatologia , Diagnóstico Tardio , Humanos
9.
Artigo em Inglês | MEDLINE | ID: mdl-32619119

RESUMO

Amyotrophic lateral sclerosis (ALS) is an invariably fatal adult-onset neurodegenerative disorder; approximately 10% of ALS is monogenic but all ALS exhibits significant heritability. The skeletal muscle sodium channelopathies are a group of inherited, non-dystrophic ion channel disorders caused by heterozygous point mutations in the SCN4A gene, leading to clinical manifestations of congenital myotonia, paramyotonia, and periodic paralysis syndromes. We provide clinical and genetic evidence of concurrence of these two rare disorders which implies a possible shared underlying pathophysiology in two patients. We then identify an enrichment of ALS-associated mutations in another sodium channel, SCN7A, from whole genome sequencing data of 4495 ALS patients and 1925 controls passing multiple testing correction (67 variants, p = 0.0002, Firth logistic regression). These findings suggest dysfunctional sodium channels may play a role upstream in the pathogenesis of ALS in a subset of patients, potentially opening the door to novel personalized medicine approaches.


Assuntos
Esclerose Amiotrófica Lateral , Canalopatias , Adulto , Esclerose Amiotrófica Lateral/genética , Canalopatias/genética , Humanos , Músculo Esquelético , Canal de Sódio Disparado por Voltagem NAV1.4 , Sódio
10.
Expert Rev Mol Diagn ; 20(7): 725-736, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32657178

RESUMO

INTRODUCTION: Skeletal muscle channelopathies are rare inherited conditions that cause significant morbidity and impact on quality of life. Some subsets have a mortality risk. Improved genetic methodology and understanding of phenotypes have improved diagnostic accuracy and yield. AREAS COVERED: We discuss diagnostic advances since the advent of next-generation sequencing and the role of whole exome and genome sequencing. Advances in genotype-phenotype-functional correlations have improved understanding of inheritance and phenotypes. We outline new phenotypes, particularly in the pediatric setting and consider co-existing mutations that may act as genetic modifiers. We also discuss four newly identified genes associated with skeletal muscle channelopathies. EXPERT OPINION: Next-generation sequencing using gene panels has improved diagnostic rates, identified new mutations, and discovered patients with co-existing pathogenic mutations ('double trouble'). This field has previously focussed on single genes, but we are now beginning to understand interactions between co-existing mutations, genetic modifiers, and their role in pathomechanisms. New genetic observations in pediatric presentations of channelopathies broadens our understanding of the conditions. Genetic and mechanistic advances have increased the potential to develop treatments.


Assuntos
Canalopatias/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas de Diagnóstico Molecular , Adulto , Idade de Início , Canais de Cálcio Tipo L/genética , Canalopatias/genética , Criança , Canais de Cloreto/genética , Comorbidade , DNA/genética , DNA Mitocondrial/genética , Humanos , Lactente , Laringismo/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Mutação , Miotonia Congênita/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Paralisias Periódicas Familiares/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Morte Súbita do Lactente/genética
12.
Clin Neurophysiol ; 131(4): 816-827, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32066100

RESUMO

OBJECTIVE: Hypokalaemic periodic paralysis (HypoPP) is caused by mutations of Cav1.1, and Nav1.4 which result in an aberrant gating pore current. Hyperkalaemic periodic paralysis (HyperPP) is due to a gain-of-function mutation of the main alpha pore of Nav1.4. This study used muscle velocity recovery cycles (MVRCs) to investigate changes in interictal muscle membrane properties in vivo. METHODS: MVRCs and responses to trains of stimuli were recorded in tibialis anterior and compared in patients with HyperPP(n = 7), HypoPP (n = 10), and normal controls (n = 26). RESULTS: Muscle relative refractory period was increased, and early supernormality reduced in HypoPP, consistent with depolarisation of the interictal resting membrane potential. In HyperPP the mean supernormality and residual supernormality to multiple conditioning stimuli were increased, consistent with increased inward sodium current and delayed repolarisation, predisposing to spontaneous myotonic discharges. CONCLUSIONS: The in vivo findings suggest the interictal resting membrane potential is depolarized in HypoPP, and mostly normal in HyperPP. The MVRC findings in HyperPP are consistent with presence of a window current, previously proposed on the basis of in vitro expression studies. Although clinically similar, HyperPP was electrophysiologically distinct from paramyotonia congenita. SIGNIFICANCE: MVRCs provide important in vivo data that complements expression studies of ion channel mutations.


Assuntos
Paralisia Periódica Hipopotassêmica/fisiopatologia , Potenciais da Membrana/fisiologia , Músculo Esquelético/fisiopatologia , Paralisia Periódica Hiperpotassêmica/fisiopatologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sarcolema/fisiologia , Adulto Jovem
13.
Sci Rep ; 9(1): 17560, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772215

RESUMO

The sarcolemmal voltage gated sodium channel NaV1.4 conducts the key depolarizing current that drives the upstroke of the skeletal muscle action potential. It contains four voltage-sensing domains (VSDs) that regulate the opening of the pore domain and ensuing permeation of sodium ions. Mutations that lead to increased NaV1.4 currents are found in patients with myotonia or hyperkalaemic periodic paralysis (HyperPP). Myotonia is also caused by mutations in the CLCN1gene that result in loss-of-function of the skeletal muscle chloride channel ClC-1. Mutations affecting arginine residues in the fourth transmembrane helix (S4) of the NaV1.4 VSDs can result in a leak current through the VSD and hypokalemic periodic paralysis (HypoPP), but these have hitherto not been associated with myotonia. We report a patient with an Nav1.4 S4 arginine mutation, R222Q, presenting with severe myotonia without fulminant paralytic episodes. Other mutations affecting the same residue, R222W and R222G, have been found in patients with HypoPP. We show that R222Q channels have enhanced activation, consistent with myotonia, but also conduct a leak current. The patient carries a concomitant synonymous CLCN1 variant that likely worsens the myotonia and potentially contributes to the amelioration of muscle paralysis. Our data show phenotypic variability for different mutations affecting the same S4 arginine that have implications for clinical therapy.


Assuntos
Canais de Cloreto/genética , Paralisia Periódica Hipopotassêmica/genética , Miotonia/genética , Adolescente , Arginina , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética
14.
Front Pharmacol ; 10: 953, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555136

RESUMO

Voltage-gated sodium (NaV) channels are essential for the normal functioning of cardiovascular, muscular, and nervous systems. These channels have modular organization; the central pore domain allows current flow and provides ion selectivity, whereas four peripherally located voltage-sensing domains (VSDs-I/IV) are needed for voltage-dependent gating. Mutations in the S4 voltage-sensing segments of VSDs in the skeletal muscle channel NaV1.4 trigger leak (gating pore) currents and cause hypokalemic and normokalemic periodic paralyses. Previously, we have shown that the gating modifier toxin Hm-3 from the crab spider Heriaeus melloteei binds to the S3-S4 extracellular loop in VSD-I of NaV1.4 channel and inhibits gating pore currents through the channel with mutations in VSD-I. Here, we report that Hm-3 also inhibits gating pore currents through the same channel with the R675G mutation in VSD-II. To investigate the molecular basis of Hm-3 interaction with VSD-II, we produced the corresponding 554-696 fragment of NaV1.4 in a continuous exchange cell-free expression system based on the Escherichia coli S30 extract. We then performed a combined nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy study of isolated VSD-II in zwitterionic dodecylphosphocholine/lauryldimethylamine-N-oxide or dodecylphosphocholine micelles. To speed up the assignment of backbone resonances, five selectively 13C,15N-labeled VSD-II samples were produced in accordance with specially calculated combinatorial scheme. This labeling approach provides assignment for ∼50% of the backbone. Obtained NMR and electron paramagnetic resonance data revealed correct secondary structure, quasi-native VSD-II fold, and enhanced ps-ns timescale dynamics in the micelle-solubilized domain. We modeled the structure of the VSD-II/Hm-3 complex by protein-protein docking involving binding surfaces mapped by NMR. Hm-3 binds to VSDs I and II using different modes. In VSD-II, the protruding ß-hairpin of Hm-3 interacts with the S1-S2 extracellular loop, and the complex is stabilized by ionic interactions between the positively charged toxin residue K24 and the negatively charged channel residues E604 or D607. We suggest that Hm-3 binding to these charged groups inhibits voltage sensor transition to the activated state and blocks the depolarization-activated gating pore currents. Our results indicate that spider toxins represent a useful hit for periodic paralyses therapy development and may have multiple structurally different binding sites within one NaV molecule.

15.
Epilepsia Open ; 4(3): 498-503, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31440732

RESUMO

SCN4A gene mutations cause a number of neuromuscular phenotypes including myotonia. A subset of infants with myotonia-causing mutations experience severe life-threatening episodic laryngospasm with apnea. We have recently identified similar SCN4A mutations in association with sudden infant death syndrome. Laryngospasm has also been proposed as a contributory mechanism to some cases of sudden unexpected death in epilepsy (SUDEP). We report an infant with EEG-confirmed seizures and recurrent apneas. Whole-exome sequencing identified a known pathogenic mutation in the SCN4A gene that has been reported in several unrelated families with myotonic disorder. We propose that the SCN4A mutation contributed to the apneas in our case, irrespective of the underlying cause of the epilepsy. We suggest this supports the notion that laryngospasm may contribute to some cases of SUDEP, and implicates a possible shared mechanism between a proportion of sudden infant deaths and sudden unexpected deaths in epilepsy.

16.
Nat Commun ; 10(1): 3094, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300657

RESUMO

AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission.


Assuntos
Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de AMPA/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Heterozigoto , Humanos , Lactente , Mutação com Perda de Função , Imageamento por Ressonância Magnética , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Adulto Jovem
18.
Neurology ; 92(13): e1405-e1415, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30824560

RESUMO

OBJECTIVE: To identify the genetic and physiologic basis for recessive myasthenic congenital myopathy in 2 families, suggestive of a channelopathy involving the sodium channel gene, SCN4A. METHODS: A combination of whole exome sequencing and targeted mutation analysis, followed by voltage-clamp studies of mutant sodium channels expressed in fibroblasts (HEK cells) and Xenopus oocytes. RESULTS: Missense mutations of the same residue in the skeletal muscle sodium channel, R1460 of NaV1.4, were identified in a family and a single patient of Finnish origin (p.R1460Q) and a proband in the United States (p.R1460W). Congenital hypotonia, breathing difficulties, bulbar weakness, and fatigability had recessive inheritance (homozygous p.R1460W or compound heterozygous p.R1460Q and p.R1059X), whereas carriers were either asymptomatic (p.R1460W) or had myotonia (p.R1460Q). Sodium currents conducted by mutant channels showed unusual mixed defects with both loss-of-function (reduced amplitude, hyperpolarized shift of inactivation) and gain-of-function (slower entry and faster recovery from inactivation) changes. CONCLUSIONS: Novel mutations in families with myasthenic congenital myopathy have been identified at p.R1460 of the sodium channel. Recessive inheritance, with experimentally established loss-of-function, is a consistent feature of sodium channel based myasthenia, whereas the mixed gain of function for p.R1460 may also cause susceptibility to myotonia.


Assuntos
Síndromes Miastênicas Congênitas/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adulto , Animais , Eletromiografia , Feminino , Finlândia , Humanos , Laringismo/genética , Laringismo/fisiopatologia , Mutação com Perda de Função , Masculino , Hipotonia Muscular/genética , Hipotonia Muscular/fisiopatologia , Músculo Esquelético/patologia , Mutação de Sentido Incorreto , Síndromes Miastênicas Congênitas/metabolismo , Síndromes Miastênicas Congênitas/fisiopatologia , Miotonia/genética , Miotonia/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Oócitos , Técnicas de Patch-Clamp , Linhagem , Sequenciamento do Exoma , Xenopus
19.
Brain ; 141(12): 3308-3318, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423015

RESUMO

Hypokalaemic periodic paralysis is a rare genetic neuromuscular disease characterized by episodes of skeletal muscle paralysis associated with low serum potassium. Muscle fibre inexcitability during attacks of paralysis is due to an aberrant depolarizing leak current through mutant voltage sensing domains of either the sarcolemmal voltage-gated calcium or sodium channel. We report a child with hypokalaemic periodic paralysis and CNS involvement, including seizures, but without mutations in the known periodic paralysis genes. We identified a novel heterozygous de novo missense mutation in the ATP1A2 gene encoding the α2 subunit of the Na+/K+-ATPase that is abundantly expressed in skeletal muscle and in brain astrocytes. Pump activity is crucial for Na+ and K+ homeostasis following sustained muscle or neuronal activity and its dysfunction is linked to the CNS disorders hemiplegic migraine and alternating hemiplegia of childhood, but muscle dysfunction has not been reported. Electrophysiological measurements of mutant pump activity in Xenopus oocytes revealed lower turnover rates in physiological extracellular K+ and an anomalous inward leak current in hypokalaemic conditions, predicted to lead to muscle depolarization. Our data provide important evidence supporting a leak current as the major pathomechanism underlying hypokalaemic periodic paralysis and indicate ATP1A2 as a new hypokalaemic periodic paralysis gene.


Assuntos
Paralisia Periódica Hipopotassêmica/genética , Paralisia Periódica Hipopotassêmica/fisiopatologia , ATPase Trocadora de Sódio-Potássio/genética , Animais , Criança , Humanos , Paralisia Periódica Hipopotassêmica/patologia , Masculino , Potenciais da Membrana , Músculo Esquelético/patologia , Mutação de Sentido Incorreto , Potássio/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Xenopus laevis
20.
Sci Rep ; 8(1): 9714, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29946067

RESUMO

Dominantly inherited channelopathies of the skeletal muscle voltage-gated sodium channel NaV1.4 include hypokalaemic and hyperkalaemic periodic paralysis (hypoPP and hyperPP) and myotonia. HyperPP and myotonia are caused by NaV1.4 channel overactivity and overlap clinically. Instead, hypoPP is caused by gating pore currents through the voltage sensing domains (VSDs) of NaV1.4 and seldom co-exists clinically with myotonia. Recessive loss-of-function NaV1.4 mutations have been described in congenital myopathy and myasthenic syndromes. We report two families with the NaV1.4 mutation p.R1451L, located in VSD-IV. Heterozygous carriers in both families manifest with myotonia and/or hyperPP. In contrast, a homozygous case presents with both hypoPP and myotonia, but unlike carriers of recessive NaV1.4 mutations does not manifest symptoms of myopathy or myasthenia. Functional analysis revealed reduced current density and enhanced closed state inactivation of the mutant channel, but no evidence for gating pore currents. The rate of recovery from inactivation was hastened, explaining the myotonia in p.R1451L carriers and the absence of myasthenic presentations in the homozygous proband. Our data suggest that recessive loss-of-function NaV1.4 variants can present with hypoPP without congenital myopathy or myasthenia and that myotonia can present even in carriers of homozygous NaV1.4 loss-of-function mutations.


Assuntos
Paralisia Periódica Hipopotassêmica/genética , Paralisia Periódica Hipopotassêmica/metabolismo , Miotonia/genética , Miotonia/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Adulto , Animais , Eletrofisiologia , Células HEK293 , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Masculino , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Linhagem , Estrutura Secundária de Proteína , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...